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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-255

REQUIREMENTS OF TRAJECTORY CORRECTIVE IMPULSES DURING THE

APPROACH PHASE OF AN INTERPLANETARY MISSION

By Alan L. Friedlander and David P. Harry, III

SUMMARY

The basic equations describing trajectory motion in the vicinity of
a target body are presented in dimensionless form. The expressions are
limited to two-dimensional orbital motion that is relative to a spherical
planet influenced only by an inverse-square central force field. Correc-
tive maneuvers executed during the approach phase of an interplanetary
flight are studied. Optimization techniques are used to determine the
minimum velocity impulse required to correct initial perigee errors, the
numerical solution being obtained iteratively with the aid of a digital
computer. The magnitude and alinement of the minimum impulse vector are
presented for an extensive range of initial conditions. It is found that
the related cost requlrement, in terms of impulse magnitude, increases
with the time necessary to detect and correct "off-course" trajectories.
The minimum corrective impulses associated with the approach phase are
compared with the total requirements of a round-trip Mars mission.

Tmpulsive thrusts applied in directions other than optimum are
analyzed to determine deviations from the minimum magnitudes. Circum-
ferential impulses, which can be calculated from an algebraic expression,
offer an excellent approximation under cerisin inltial conditions;
namely, if the correction is executed at a radial distance much greater
than the target perigee. Expressions for the errors in corrected perigee
(miss distance) due to magnitude and directional errors of the applied
velocity impulse are presented for the case of circumferential thrust.

An example of a trajectory utilizing atmospheric deceleration demonstrates
the critical effect of cutoff errors and gives some measure of the accu-
racy required in the control of the velocity vector.

INTRODUCTION

When considering interplanetary flights, it 1s recognized that
simple ballistic trajectories will meet with little success. A study by




Ehricke (ref. 1) shows that the accuracy requirements during the initial
launch phase appear technically unfeasible. Therefore, it 1s reasonable
to expect a space probe will be equipped with a navigation and guidance
system that will allow trajectory corrections en route.

The main goal of both the launch and midcourse guidance phase 1s to
assure a successful rendezvous with the heliocentric orbit of the destina-
tion planet at the proper time and place. Upon arriving at the destina-
tion, the velocity of the space vehiecle will, in general, differ from
the orbital velocity of the target plenet. This difference is called
the hyperbolic velocity relative to the planet (ref. 2). The attracting
body causes the vehicle to move along a hyperbolic approach trajectory.
Because of various perturbations, such as guldance errors, the initial
trajectory will most likely differ from the desired one. It will there-
fore be necessary to correct the trajectory. A convenient measure of
the significant trajectory parameters is the perigee (distance of closest
approach). x
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The major objective of this report is to present an analysis of the
minimum velocity impulse requilred to correct perigee errors. The target .
perigee 1s chosen based upon mission requirements such as the establish-
ment of a satellite orbit or possibly the use of atmospheric decelera-
tion. However, in order not to limit the results, the solution will be
considered independent of the maneuver executed upon reaching the target
perigee. A study is also made of velocity impulses alined in directions
other than the optimum to determine the penalties in energy expenditure
due to departure from optimum.

In support of the necessity of perigee corrections, two methods of
transferring from an approach trajectory to a circular satellite orbit
are investigated and compared on the basis of velocity requirements.

The total velocity impulses associated with interplanetary flights are
presented in reference 2 for an idealized trajectory assuming no path
corrections upon approaching the target planet. The results of the
present study may be used to calculate the contribution of corrective
impulses to overall mission requirements. Also included in this report

1s an analysis illustrating the effects of impulse alinement and magnitude
errors upon the corrected trajectory. The accuracy required in the con-
trol of the impulse vector may be estimated if the permissible error in
the target perigee is given.

. The results of this report are not intended to apply to an actual
space flight. The fundamental relations describing trajectory motion
are limited to the assumption of a two-body, two-dimensional problem.
Since the scope of the analysis is defined only in the viecinity of the
target planet, this assumption is felt to be valid. The results and
conclusions should be useful to any future comprehensive mission
analysis.




E-484

-

CY-1 back

A dimensionless semimajor axis, a/rPz

a semimajor axis, miles

E dimensionless total energy per unit mass, Zéy(vgz)z

4 total energy per unit mass, (miles/sec)2

universal gravitational constant

H dimensionless angular momentum per unit mass, h/v;érpz

h angular momentum per unit mass, milesz/sec

M mass of planet

R dimensionless radial distance (range), r/rpz

RP dimensionless perigee of trajectory, rp/rp2

r radial distance measured from center of planet (range), miles

Ty perigee of trajectory, miles

v dimensionless velocity, v/v;;

AV dimensionless velocity impulse, Aw/v;é

v velocity, miles/sec

v; velocity of escape at perigee, miles/sec

a trajectory angle, angle between local horizontal and trajectory
tangent, deg

B velocity impulse angle with respect to initial velocity vector,
deg

Subscripts:

c circular

e escape

SYMBOLS



h hyperbolic
i entry -
min minimum

opt optimum

t total ?
&
t.e. transfer ellipse L
I first impulse
IT second impulse
A
1 conditions of initial approach trajectory
2 conditions of desired approach trajectory .

ANATYSTS
Method of Analysis

Assumptions. - In order to simplify the following analysis, certain
assumptions and approximations are made. Trajectory motion during the
approach phase is considered to be relative to the attractive body and
influenced only by an inverse-square central force field. Furthermore,
the mass of the vehicle is insignificant in comparison to that of the
attracting body. Only high-thrust devices are consldered. The velocity
impulses are therefore associated with negligible burning times relative
to trajectory time scales, and the direction of the veloclty impulse
vector can be considered constant. Also, the corrective impulses are
applied in a constant plane of motion. Imitial trajectory parameters,
such as velocity, perigee, and radial distance, are accurately known.
Therefore, trajectory corrections can be made at a reasonably large
distance from the planet.

In an actual flight situation many of these assumptions may not be
valid. For instance, perturbing effects of moons, unsymmetrical gravi-
tational fields, instrument errors, and three-dimensional motion must be -
saken into account. The results of this report are intended only to
lefine the nature of corrective maneuvers and to aid in the rapid esti-
1zation of velocity requirements.

Normallzed trajectory equations. - If the results of this analysis
re to be applicable to any target planet, the basic equations describing




trajectory motion must be transformed to a dimensionless, or normalized,
form. This is achieved by using the perigee of the desired approach
trajectory and the escape velocity at this radial distance as the nor-
malizing factors. In this way the target perigee remains a variable and
yet 1s eliminated as a separate system parameter.

The normalization procedure is applied to the two basic equations
describing motion along the trajectory, namely the conservation of both
energy and angular momentum. Since the classical two-body problem has
been assumed, the total energy per unit mass is given by the sum of
kinetic and potential energy:

2
e=-5 & (1)
The angular momentum per unit mass is
h = vr cos a (2)
where o (see fig. 1) is the trajectory angle between the velocity vector
and the perpendicular to the radial wvector. The velocity of escape is
defined as the velocity along a parabolic orbit (& = 0). Therefore, at

the perigee of a desired approach path the velocity of escape is a con-
stant given by

(v¥ )2« 2 (3)
Pz rPz

The deflnlng eguaticne of the normalization are

\

-
Py

E = 26
* 12
(sz)

h
H o= s
Py Py S

Equations (1) and (2) may now be divided by (V;Z)z and vgzrpz,

respectlvely, and rewrltten in dimensionless form:
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E=V -z (5)

H = VR cos a (8)

The trajectory angle at the perigee of any approach path is identi-
cally zero. Since equations (5) and (6) are conservative, they may be
combined for conditions at the perigee. The angular momentum is thus
shown to be a function of energy and perigee:

HZ=RIZ)E+Rp (7)

The trajectory angle is now given as

cos a = R%E + 5 (8)
REE + R

Range of initial conditions. - A summary of planetary data presented
in references 2 and 3 is listed in table I. All quantities in the table
are either given in dimensional units or are referred to conditions at
the surface of the planet.

Row 3 represents a good estimate of the maximum radial distance
(range) where a space probe could be considered influenced mainly by the
force field of the attracting body. Values of initial perigee both
greater and less than the target perigee will be investigated. The
initial energy of an approach trajectory is equal to the square of the
normalized hyperbolic veloecity. The values given in rows 4 and 5 must
first be normalized to the target perigee. For the purpose of this
analysis, a reasonable range of initial conditions 1s taken as

0.0L < R < 100

0.01 < Rp_ < 100
1

0<E; £1.0

It should be mentioned that negative energiles (elliptical trajectories)
may be of interest. The subsequent equations will be valid for this
case; however, results will be discussed only in terms of higher energy
trajectories.

Throughout the analysis all equations will be written in normalized
form, and most results and conclusions will be discussed in terms of
normalized parameters. This should not cause the reader to lose sight
of the physical significance of the results. For a given problem the

-~ .
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desired conditions are fixed. Therefore, the dimensionless parameters
are directly proportional to the real parameters.

Perigee Corrections - Minimization of Veloclty Impulse

The gravitational field of an attracting body causes a space vehicle
entering the field to move along an approach trajectory relative to the
body. With reference to figure 1, assume that the perigee (distance of
closest approach) of the initial trajectory differs from a desired or
target perigee. The target perigee is chosen based on mission require-
ments such as the establishment of a satellite orbit, or possibly the
use of atmospheric deceleration. A velocity impulse must therefore be
applied to correct the initial perigee error. The impulse required can
be minimized by orienting the thrust vector in the proper direction.

Characteristics of optimum solution. - From the trigonometric rela-
tions of figure 1,

2 2 2
AV® = V] + Vg - 2V;V, cos (cx,z - ocl) (9)
and

v, sin(a, -
cin g = 5 31n(Z§ Gl) (10)

To perform the optimization, the total derivative of equation (9) is
taken and equated to zero, all quantities with subscript 1 being constant:

da
1 2 o
From equations (5), (6), and (7), where sz = 1 Dby definition,
2 2 2
By = Vs - & =H; - 1= (VR cos ay) -1

or

2 R -1
Vo = 12
2 = R(R® coszaz - 1) (12)

This equation defines the general vector VZ that is required to satisfy
the corrected trajectory.



Differentiating equation (12), R being constant,

Vg o V% cos ap sin Qo da2
L - costa dvyp
R® a

Substituting this result into equation (11) and simplifying give

Vv sin « cos
VE et (1 - L\ & !E 1 (13)
1 8in oy R% RZ COS Qg

Equations (12) and (13) act together to define optimum conditions;
however, any algebraic manipulation leads to a polynomial equation of
such high degree that the task of extracting the real roots becomes
impractical. Since high-speed computing facilities were avilable, it
was considered expedient to obtailn a trial-and-error iterative solution.
This was accomplished as follows.-

In equation (13), ao was used as the trial value based initially
upon the knowledge of a,; V, was obtained from equation (13) and then

substituted into equation (12), thereby giving a new value of as that
was treated by a forced conversion technique. The looping terminated
vwhen successive values of Vs agreed to six significant digits. The
resulting values of (Vz:az)opt were used in equations (9) and (10) to

obtain the optimum (minimum) velocity impulse vector (AV,B).

Care was exercised in the iterative treatment to assure that the
solution yielded the proper root corresponding to minimum conditions.
To assist in explaining the characteristics of the optimum solution,
consider equation (12). For a given initial trajectory and range R,
Vo, 1is found corresponding to any choice of ap. The velocity increment

is then calculated from equation (9).

Figure Z(a), plotted for El = 0, RPl = 5, and R = 50, shows the

effect of the trajectory angle on the size of the corrective impulse.

For this plot, a, is defined as the angle measured clockwise from the
vector Vs to the horizontal direction. FPor the purpose of explanatlon,
the figure is divided into four quadrants. A vector V, 1lying in the
first quadrant designates counterclockwise motion directed toward the
attracting body. Simflarily, second-, third-, and fourth-quadrant vectors
designate clockwise-toward, clockwise-away, and counterclockwise-away
motion, respectively. The latter two can be dismissed, since only motion
that approaches the target body is of interest here. Furthermore, it can

787~
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be said intuitively that, unless rotational changes are warranted, im-
pulses that act to maintain the initial rotation should be less costly.
This is substantiated by the graph, which shows two distinct optimums,
one occurring at on = 81.53° and the other at o = 98.47°. The corre-

sponding impulse magnitudes are 0.0247 and 0.0648, respectively, the
former being the minimum solution. In this example there is a small band
of trajectory angles (88.85° < %o < 91.15°) that result in a nonreal im-
pulse. It can be shown from equation (12) that this band increases with
decreasing R.

To illustrate the sensitivity in the viecinity of the minimum, a mag-
nified plot is shown in figure 2(b). Whereas the minimum impulse is
highly sensitive to the trajectory angle, it is very insensitive to the
thrust direction. For example, a AV change of 0.01 on both sides of
the minimum corresponds to a 2.9° change in as and an 86° change in .

The optimum solution has been discussed for a particular set of
initial conditions. Although numerical results and sensitivities will
vary with initial conditions, the general characteristic of figure 2(a)
can be anticipated. The iterative solution was employed to calculate a
multitude of data points with no apparent discrepancy; therefore, the
true minimum solution is assumed.

In the event that a corrective impulse is applied at the perigee of
the approach trajectory, equation (13) is reducible and the optimization
may be treated analytically. This special case is discussed in appendix A.

Characteristics of minimum velocity impulse. - The minimum impulse has
keen caleculated for an extensive range of initial conditions and is illus-
trated in figure 3 for an arbitrary energy Eq of 0.05.

The magnitude of AV is plotted in figure 3(a) as a function of
initial perigee for a family of constant radial distance. An initial
perigee Rpl of 1 represents an initial "on-course" trajectory; there-

fore, AV 1is zero at this point. As the initial perigee deviates from
unity, the required impulse increases. Also, for a given perigee, the
greater the range at which the correction is made, the smaller the veloc-
ity impulse.

The optimum impulse angle PB,py 1is shown in figure 3(b). It is
noted that Bopt approaches 90° as RPl approaches unity. Also, if the

correction 1s made at a large distance from the planet, the optimum angle
is quite insensitive to the initial perigee, but becomes increasingly
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sensitive with decreasing R. Consequently, when R 1s small and
Rpl > 1, a significant error in the corrected perigee can be expected

because of thrust misalinement. This result is demonstrated by a detailed
error analysis later in this report.

A most interesting and useful result is

~ 1
AR E, <F 14
(av) P, 21 R (14)

The inverse proportionality is illustrated in figure 3(0), where the data
presented in figure 3(a) are plotted as a function of R for a family
of constant Rpl. The log-log scale is chosen to demonstrate an approxi-

nmate slope of -1. TFor a given trajectory the maximum deviation occurs
wvhen R = Rpl. The accuracy of the approximation increases with de-

creasing perigee. For example, the maximum errors at RPl =5 and 2

are about 5.4 and 32 percent, respectively. However, for most conditions
the error is insignificant and expression (14) offers an excellent approx-
imation. This result was found to apply equally well for all values of
initial energy and perigee studied.

In general, the minimum impulse causes a change in the velocity and
therefore a change in the energy of the approach trajectory. This effect
is shown in figure 3(d). For a given R, the larger the required perigee
correction, the larger the energy change. The most significant character-
istic is that the energy is decreased if the initial perigee is greater
than the target perigee and vice versa. The importance of this fact is
realized vwhen consideration is given to type of maneuver executed upon
arriving at the target perigee. Assume the mission requirement calls
for a satellite orbit around the planet, the energy of which is always
less than the approach energy. Obviously, the less the difference be-
tween the two energies, the smaller will be the wvelocity increment needed
to establish the satellite orbit. Therefore, if Rpl > 1, the minimum

impulse appears to have an added advantage in terms of the total mission.

Approximate calculation for general set of initial conditions. -
Thus far, only the characteristics of the minimum impulse have been
discussed. It would be useful to present the results in a manner that
would enable one to obtain a rapid and reasonably accurate numerical
answer for an arbitrary target planet and approach trajectory. This is
accomplished using the approximation of equation (14). Figure 4, plotted
for R = 50, shows the variation of minimum impulse with initial energy
for a family of constant initial perigees. Therefore, given an arbitrary

78Y~E
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set of initial conditions (E R), Avmin is found by entering the

l’ P 2

1
graph with the particular E,, interpolating for Rpl, and multiplying
the value of AV read off the ordinate scale by 50O/R.

As an example, consider approaching Venus along a hyperbolic tra-
Jectory described by the following parameters: vy = 1. 70 miles per sec-

ond and rpl = 4.95 Venus radii. Furthermore, the initial perigee is

to be corrected at a distance r = 75 Venus radii to a target perigee
rPz = l.1 Venus radii. The initial energy is the square of the hyperbolic

velocity. Using the defining equations (4), the normalized parameters
are found to be Ej = 0.075, Rp, = 4.5, and R = 68.2. From figure 4(a},

50
AV & 0.03 (m) = 0.0222

Since the escape velocity at 1.1 radii is 6.2 miles per second = 32,750
feet per second, the minimum veloecity impulse required 1s

Av = (0.0222)(32,750) = 727 ttfsec

Velocity Impulses Alined in Directions Other Than Optimum

For most initial conditions the corrective velocity lmpulse may be
applied in any given direction, where the magnitude of the impulse is
then dependent on direction. Heretofore, the case of the minimum im-
pulse has been presented. There are at least three other well-defined
directions in which a corrective impulse may be applied: tangential,
radial, and circumferential. A fourth possibility is to apply thrust in
such a direction that the energy remains the same before and after
burning.

It would be of interest to study these cases individually in order
to determine first, whether such corrections are feasible, and second,
how and under what conditions they compare with the minimum. It would
be extremely useful to obtain a simple algebraic expression that would
closely approximate the minimum impulse. The analysis is presented in
appendix B; the results are glven herein.

Tangential impulse. - The veloecity impulse for the tangential
direction is

~ ) (B4R + 1)(R - 1) \
AV = |A/E; + 1/R '\ERZRP ") A, ) (15)
1
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Radial impulse. - The radial velocity impulse is
E-RZ (R® - 1) + R2(R. - 1) + (R - R_ )
1%p, Ry Rp
1 1
- 2 _ R2 -
/VE]_(R Rpl) + (R Rpl) |(l6)

AV=1%

Circumferential impulse. - The equation for circumferential impulse

is

(17)

-1

E.(R% - RZ.) + (R - R,.)
A‘-‘"«/lﬂpqu/l L

Zero-energy-change impulse. - The equation for no energy change is
as follows:

E, +1
AV = ZQ/El + l/R sin % cos™L e SR % cos~1

R%E; + R

2
E, +
Rp.B1 + Rp,
R?‘E1+R

(18)

Comparison with minimum impulse. - The required impulsive velocities
corresponding to tangential, radial, clrcumferential, and zero-energy-
change vectoring are given by equations (15), (1e), (17), and (18),
respectively. The first two are compared with AVyi, and plotted in

figure 5 for E; = 0 and R = 100. Tangentlal thrust approaches the

minimum only when the initial perigee is equivalent to the range at
which the thrust is applied. For all other conditions the deviation 1s
considerable, the increase in AV Dbeing as much as 100-fold for small
initial perigees. The use of radial thrust requires much larger AV
values. In fact, for this example, radial thrust cannot be applied if

Rpl < 0.99 (see fnrust limitations in appendix B). This deviation from

the minimum has been found to be characteristic for all initial condi-
tions (El,RP ,R) studied. It is concluded that corrective impulses
1

alined in either the tangential or the radlal direction are much too
costly in terms of required veloecity increment.

The veloclty requirements of circumferential and zero-energy-change
impulses are compared with the minimum in the following table:

¥8%-H
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R | (Avx102) ;. | AVX102 |4 deviation | AVX10% |% deviation
(AE = 0) | from min. (circum- from min.
ferential)
El = O, Rp
1
100 2.163 2.211 2.2 2.163 0.00
50 4,328 4,531 4,7 4,328 .00
20 10.87 12.36 14,0 10. 87 .00
10 22.09 36.98 67.0 22.09 0
El = 0, Rpl = 1.175
4.90 1.763 1.890 7.2 1.805 2.4
2.94 3.159 3. 620 14 3. 285 4.0
2.45 3.992 4.580 14 4,185 4.8
1.96 5.523 6. 230 13 5.890 6.7
1.47 9.648 11.21 16 11. 48 19.0
1.175 29.17 36. 40 25 29. 80 2.2

The upper part of the table is for a parabolic approach trajector
having an initial perigee ten times as great as the target perigee.
Zero-energy-change impulses are reasonably good approximations to the
minimum when R 1is considerably larger than Rpl. The maximum deviation

occurs when the correction is made at the perigee. Circumferential im-
pulses do not differ significantly from the minimum.

The second part of the table shows the effect when corrective thrust
is applled near the target perigee. In the case of zero-energy-change
impulses, the deviation increases as the range is decreased, and the
order of magnitude is not unlike that of the first example. For circum-
ferential impulses, the deviation 1s small when R 1s large, increases
with decreasing R, and then becomes small again as R »-Rpl. As dis-

cussed in appendix A, if thrust is applied at the perigee, the minimum
veloclty increment corresponds to circumferential alinement in most
cases. If the approach trajectory is parabolic, this is true provided
R = RP > 1.220.

1

As a means of explaining the close equivalence of circumferential

and minimum Impulses, consider equation (13), which is the equation of
condition for the optimization:

v sin « cos o
2 l(l-i-)+l 1

VI = Ssin Qo RZ Eg COS Qo (13)
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Now if R 1s much greater than the target perigee,

41«1

Re

cos C(,l 2

and << R

cos an
then

V2

vy

cos aq
sin az

~
=

But the relation that describes circumferential thrust is given by
equation (Bl1):

YE - sin (Ll
Vl sin Q'z

Therefore, when the approximation is valid the minimum solution will
yield a circumferential thrust. The magnitudes of the two terms in
equation (13) are compared in the following table to illustrate the
degree of approximation involved. The initial conditions chosen are
identical to those in the preceding table, which compared the AV re-
quired for the minimum and circumferential impulses:

R sin o cos
_.__:L 1l - 1 _:L_.__._l
sin a, R2 R2 COS Qo

By = 0, Rp =10

100 0.953 0. 000301
50 . 905 . 00115
20 . 740 . 00595

By =0, By =1.175

4.90 0.937 0. 0445
2.94 . 850 .123
2. 45 . 792 177
1.96 . 685 277
1. 47 . 445 . 492

The usefulness of equation (17) in estimating the minimum impulse is
apparent in terms of reduced computing effort.

FQFH =T
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Transfer Maneuvers and Total Mission Requirements

Throughout the previous analysis the problem of correcting off-
course approach trajectories to pass through a desired perigee has been
investigated. The solution was considered independent of the type of
maneuver executed upon reaching the perigee. In this section the method
of perigee corrections is presented for a mission profile calling for
more than a grazing pass or for the employment of atmospheric decelera-
tion. Consideration is given to the case of establishing a circular
satellite orbit at some specified altitude. Two methods of transferring
from an approach trajectory to the satellite orbit are compared on the
basis of velocity requirements.

Perigee intersection maneuver. - The perigee intersection maneuver
involves two velocity impulses as shown in figure 1, one to correct the
perigee of the initial approach trajectory to a perigee corresponding to
the specified satellite radius, and the second to achieve circular veloc-
ity at this radius. The first impulse 1s based on the minimization
technique previously discussed. The expresslon for the second is de-
veloped in appendix C:

AVy = AV + AV = AV, + \;V’Ez +1 - —l=> (19)

7

oo

It 1s recalled that Ep is dependent upon AVp ;..

Transfer ellipse maneuver. - The transfer ellipse maneuver (fig.
6(a)) requires no correction of the initial approach trajectory, provided
it is not a collision course. Upon arriving at the perigee, a transition
is made to a transfer eliipse that 15 tangent to hoth the initial tra-
Jectory and the satellite orbit. A second velocity impulse at the latter
point of tangency establishes circular velocity. The total velocity
requirement is derived in appendix C:

Rp
,1f 1 1 1.1
= El + Rpl x/Rpl(RPl ) + RPl T 4/5 (20)

The absolute-value signs are necessary to include either initial condi-
tion, Rp >1 or RP < L
1 1

Comparison of transfer maneuvers. - The two methods of transfer
maneuver are compared on the basis of total wveloeity requirements.
Equations (19) and (20) are plotted in figure 7(a) for a parabolic
approach trajectory (E = 0). The minimm AVy (0.2929) is identical
for both methods and corresponds to an initial on-course trajectory.
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When the initial perigee is greater than the target (RPl > l), the wveloc~-

ity requirement of the transfer ellipse method reaches a meximum at about
Rpl = 7. 'The value of Rpl at which this maximum occurs increases as -

the initial energy level is raised. The perigee intersection maneuver
results in a sizable saving of velocity impulse over the transfer ellipse
method. For example, if R = 100, a maximum reduction of about 35 per-
cent occurs at Rpl = 7.

Considering RPl <1, it is seen that the perigee intersection

V8v-u

maneuver requires a smaller total velocity impulse over the range of R
studied. However, this characteristic is not generally true for all
initial conditioms.

A further comparison of the two transfer maneuvers is shown in fig-
ure 7(b), where the velocity is plotted as a function of the initial
energy. The curves representing the transfer maneuvers correspond to a
constant Initial perigee of 0.1. The curve representing the initial on-
course approach trajectory is calculated from equation (20), where N
Rpl = 1. This curve intersects the transfer ellipse curve at E, = 1.

In fact, 1t is possible to prove from equation (20) that an intersection
always occurs at thls point if Rpl < 1l. Therefore, if the initial con-

ditions are such that the energy and perigee are greater and less than
unity, respectively, it is surprisingly found that being off-course, in
the proper direction, is an advantage.

Returning to the comparison, two curves representing the perigee
intersection maneuver are shown. If the perigee correction is made at
R = 5, this method requires less velocity impulse if Ey <0.22. Simi-
larly, 1f R = 10, the energy need be less than 0.57. It is interesting
to note that the characteristic for R - « coincides with the on-course
curve. Consequently, this method is always more costly than the transfer
ellipse maneuver for the conditions RPl <1l and El > 1.

Figure 7(c) shows the variation of velocity impulse with initial
energy for a constant initial perigee of 10. Unlike figure 7(b), the
perigee intersection maneuver appears always to require less AV.

The more efficient of the two transfer maneuvers thus depends upon
the initial approach trajectory. If the initial perigee distribution
were defined, the probability of one method requiring less velocity im-
puise than the other could be calculated for a specific mission. Although
no attempt is made in this report to define such error distributions,
based on the characteristics of figures 7 it is reasonably assumed that
the method involving perigee corrections is the preferred one under most
initial conditions.
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Contribution of corrective impulses to total mission requirements. -
Consider a round-trip Mars mission involving the transfer from a circular
satellite orbit at 1.1 Earth radil to a similar orbit at 1.1 Mars radii.
Assume the transfer orbit to be a minimum-energy, heliocentric ellipse.
The hyperbolic velocities given in rows 4 and 5 of table I are here
referred to the velocity of escape at 1.1 planet radii:

(E;) = (V&) = 1.1(0.512)% = 0.2880
Mars Mars

2 2
E v = 1.1(0.266)% = 0.0777
(E,) () o ( )

==
Earth

Assume perigee corrections are made far from the planet. For this
example, R = 50 or r = (50)(1.1) = 55 plenet radii.

The regquired velocity impulse corresponding to initial perigee
errors can be found from figure 4(a). The escape velocities at 1.1 Mars
and Earth radii, respectively, are calculated from row 2 of table I:

(Ve), _ = 3.22 Alziy = 3.07 miles/sec = 16.27x10° ft/sec

MY

(ve)y, o, = 695 ,EJT = 6.64 miles/sec = 35.1x10° ft/sec
ar .

Av, ftfsec
rpl
1.2 44 T4
2 212 340
5 748 1122
10 1627 2250
20 3375 4270

The total mission requirement less corrective impulses has been
calculated in reference 2:

Avy = 36,900 ft/sec
For the purpose of this example, equal initial perigee errors are

chosen upon arrival at both Mars and Earth. The contribution of correc-
tive impulses to the total requirement is given by the following table:
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rpl AVMars Percent of
Rpl = T + total Av
AVEarth,
ft[sec
1.2 118 0. 32
2 552 1.5
5 1870 4.8
10 38717 9.5
20 7645 17.0

787~

The preceding results are presented to show the order of magnitudes
involved in the correction of off-course trajectories. If the initial
perigee distribution were defined, the corresponding thrust distribution
could be analyzed to yield a more complete and meaningful result. Such
an analysis, however, would depend upon the details of initial launching
errors, midcourse guidance, and perturbations en route, which are beyond
the scope of this report.

Effects of Cutoff Errors

It would be of interest to define the "miss distance" resulting
from errors in the application of the corrective thrust, thus giving
some measure of the accuracy required in the control of the velocity
vector. An error will be considered a small deviation of the velocity
vector (in magnitude and/or direction) from the correct value, where the
directional error is limited to the orbital plane. The analysis is based
on the definition of total derivative and simple partial differentiating.
Thus,

OR oR
P2 P2
dsz = S(a a(av) + T as (21)

Beginning with the relation H%_: R%ZEZ + sz and differentiating with

respect to a variable y,

3, 3Ry, 3E, Mp,

2
Tew " Tyt YT

Since sz =1 at the point to be evaluated,

OH, OB,
o, Ty (22)

qy 2E, + 1
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Now H, = V5R cos a,, where R 1is constant:

SH, v, O
W:RCOSGZ-ay—-VzRSln@zgy— (23)

Also, E, = V5 - 1/R, and

aEz BVZ
5 " A 5 (24)

Substitution of (24) and (25) into (23) gives

BRPZ 2(H,R cos ay - V) g;_’ré - 2H,V.R sin a, g;ﬁ
oy - 2E, + 1

(25)

The variable y may refer either to AV or PB. The evaluation of
V,/dy and Jday/dy cean be simplified by considering circumferential
impulsive thrusts, which have previously been shown to approximate the
minimum correction. This was carried ocut with reference tc the trigono-
metric relations correspondlng to figure 1, keeping in mind the two pos-
sible initial conditions Rp 1. The partial differentiation proceeded

in general terms, keeping the identity of trajectory parameters Es, Vo,

Ho, and so forth, and only thereafter was evaluated at the circumferential
condition. The results are given:

asz z(R -1)21/7-: (R - Rp)+(R2 Rp) { - it Rp, > 1
Rq/RZ 1|zm, (52 -Rpl)+(32_ 1+l)] +1f Ry <1

(26)
E{(R2-R§_)+(R2-Rp_)
aRp -2(R -1)1/E1(R2-Rp )+(R-R,, )\/Elﬁp . J - B -1 =
R2[2E (R2 -Rp)+(Rz Ry, +l;_1
(27)

For the sake of simplifying the discussion of these results, an
example was worked out. The example was chosen to demonstrate the criti-
cal effect of cutoff errors. An initial parabolic approach path relative
to Earth was selected, the target perigee being at 40 miles altitude in
order to take advantage of atmospheric deceleration.
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The miss distance due to an error in impulse magnitude is shown in
figure 8(a) as a function of initial perigee and range. There is a sig-
nificant region (Rpl < 0.4R) over which the error coefficient Brpz/B(AV)

]

is relatively independent of initial perigee. Considering a given tra-
Jjectory, the miss distance decreases with the range at which the correc-
tive impulse is applied, the variation being approximately linear over
the flat characteristic. As might be expected, the price of using a
smaller velocity increment is an increased sensitivity to deviations in
the magnitude of the applied increment.

v89-F

The miss distance due to thrust misalinement is plotted in figure
8(b). The error coefficient Brpz/BB approaches zero for two distinct

conditions: (1) if the initial trajectory is on-course, and (2) if thrust

is applied at the perigee. Considering a given trajectory, the error is
minimized by applying thrust at a large range R, a fact that is compati- )
ble with the minimization of the required corrective impulse.

Although a detailed analysis of the effects of miss distance caused -

by cutoff errors is not within the scope of this report, mention is made

of how such effects could be determined. Assuming the desired target

perigee is chosen based upon a permissible atmospheric entry angle, the

first step 1s to calculate the actual entry angle corresponding to the

miss distance. As an illustration, consider initial entry into Earth's
atmosphere (assumed spherically symmetric) at an altitude of 50 miles.

The entry angle is simply the trajectory angle and for a parabolic ap-

proach is given by cos oy = rp/4050; surface radius 1s approximately

4000 miles. It is realized that thrust application alters the energy of
the trajectory; however, it is assumed that the change is insignificant
when R is large. The vehicle therefore enters the atmosphere along an
essentially parabolic trajectory, thus making the preceding expression
for the entry angle applicable.

For this example, consider a trajectory having the following initial
conditions: Rp, =5, R = 50. From figures 8(a) and (b), the miss dis-

tance due to magnitude and alinement errors is -11.2 miles/(ft/sec) and
-0.47 mile per degree, respectively. Figure 9 is plotted to show the
effects of such errors on the atmospheric entry angle. The angle corre-
sponding to an on-course trajectory'(sz = 4040 miles) is 2.86°.

Since the upper limit of the atmosphere is taken at 50 miles alti-
tude, it is apparent that errors that result in nonentry (cos a; > 1)

cannot be permitted. Therefore, from figure 9, the magnitude error
should be greater than -0.88 foot per second, and the alinement error
should be greater than -21.3°.




E-484

21

To define the limitation of errors that result in too large an
entry angle presents a falrly difficult problem. It is recognized that
entering the atmosphere at too great an angle may be prohibitive to the
vehicle design (intolerable g loads and heating rates). A detailed
atmospheric reentry study has been made by Chapman (ref. 4), in which
methods are avallable to obtain the solution of permissible entry angles.

CONCLUDING REMARKS

The analysis presented in this report has established the relations
necessary to the investigation of corrective maneuvers during the approach
phase of an interplanetary flight. Trajectory equations were transformed
to a dimensionless form so as to be applicable to all planetary bodies.
The results axc useful within the limitation of two-dimensional trajecto-
ries that are relative to a spherical body and influenced only by an
inverse-square central force field. Furthermore, corrective thrusts were
assumed impulsive and alined in the plane of motion.

A study was made of the minimum velocity impulse that must be applied
to correct initial perigee errors. The complexity of the expressions
resulting from the optimization prompted a trizl-and-error iterative
solution. The magnitude and alinement of the minimum velocity vector
were determined and their corresponding variation with initial trajectory
parameters dlscussed. As a means of minimizing the propellant consump-
tion, it is desirable to initiate a corrective maneuver at a large dis-
tance from the planet where the trajectory velocity is relatively small.
The impulse magnitude was shown to be approximately inversely proportional
to the distance at which the thrust is applied 1f the latter is consider-
ably greater than the target periges. . Thisgjet mekes possiblc o repid
estimation of the required Impulse for any set of initial conditions.

Corrective thrusts alined in directions other than optimum were
Investigated. The size of the velocity increments corresponding to cir-
cumferential impulses closely approximates the minimum requirements; if
correctlions are executed at distances much greater than the target
perigee, the difference in AV is insignificant. Thus, 1t is possible
to estimate the minimum velocity impulse from a relatively simple
algebraic expression.

The cost of correcting off-course approach trajectories was compared
to the total requirement of a simplified Earth-Mars round-trip mission.
Large deviatlions from a desired trajectory result in sizable veloecity
increments, the anticipation of which will significantly influence ini-
tial takeoff weights and payload limitatians.
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The effect of cutoff errors on the final perigee was analyzed.
Errors in the magnitude of the velocity impulse result in miss distances
that decrease with the range at which the corrective impulse is applied.
Conversely, the miss distance due to alinement errors is minimized by
applylng thrust far from the planet. In the case of atmospheric reentry,
it was indicated that close control of the impulse vector is necessary
to accomplish successful reentry.

Iewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, October 9, 1959

v87-1
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APPENDIX A

OPTIMUM SOLUTION - SPECIAL CASE (R = Rpl)

When a corrective velocity impulse is applied at the perigee of an
approach trajectory, certain peculiarities of the optimum solution are
found. This situation is treated as follows. Equation (13) is
rewritten:

v cos sin
_zsina,zasind.l<l-_]; + L ot} 2 (13)
Vi R2 RZ cos o
At the perigee, a; = 0°; therefore,
V' sin
_E sin G.Z = —.____.sz_._ (Al)
Vi RZ cos oy
From the text,
vz po—n (22)

" R(R2 cosa, - 1)

Equations (Al) and (12) define the optimum condition.

Solution A: ay = o°

The equality of (Al) is satisfied if Ao = 0°. Therefore, onc
solution of the optimum requires a circumferential impulse that causes
the vehicle to achieve an elliptical trajectory, the perigee of which is
tangent to the target perigee when RPl >1l. If Rpl < 1, the apogee of

the ellipse is tangent to the target perigee. The velocity impulse can
be found from equations (12) and (5):

AfEL + 1R - A 1)| (A2)
Solution B: as # 0°

Equation (Al) can now be divided by sin a:

Ve o1 (a3)
Vi  R2 cos Qi
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Solving for cosza2 from equations (12), (A3), and (5),

ER+ 1 -
c:oszot.2 = —— 12 (A4)
R7(-R” + R" + E{R + 1)
Since equation (A3) must result in a real physical solution,
E.-R+ 1 b
0 < =17 (a5) 5
R%(-R° + R + EqR + 1) i~

It is recognized that the term (ElR + 1) is always positive because
V, must be positive. The restrictions placed on solution B result from
equation (A5) and may be found from the following:

3

RO -R%? -ER-1=0 (A6)

RS-R4—E1R3-R2+E1R+1=O (A7)

As an illustrative example, consider a parabolic trajectory
E, = 0). Equations (A6) and (A7) reduce to
1

3

R -R% -1 =0 (A8)

and

5

R° -R*-RZE +1=0 (A9)

Only real, positive roots need be considered. From Descartes' sign rule,
one positive root of equation (A8) and two positive roots of equation
(A9) can be expected. The solution of equation (A8) is obtained from
the cubic formula, and that of (A9) by approximation. The results are
From (A8): 0 <R < 1.466
From (A9): 1 <R < 1.220
Since the two inequalities must be compatible,

1 <R < 1.220
Therefore, for any value of R not within these limits, the expression

(A3) leads to a nonreal solution. Consequently, the first solution
(ap = 0°) is the only one and can be shown to result in the minimum AV. .
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When r < 1.220, the velocity impulse corresponding to solution B
is found from equations (A3), (12), (9), and (5):

AVE = El( - %2) N llT(z - -12-) -1 (410)
R R
For Ey = O,
2 1 1
AVE = =(2 - =) -1 All)
R( RZ) (

The characteristic of this special case is shown in figure 10. The
approach trajectory is parabolic, and the velocity impulse is applied at
the perigee. The curve plotted for R = 1.4 exemplifies a single
optimum. The minimum requirement occurs when AV is alined in the cir-
cumferential direction. An example of two optimums is i1llustrated by
the curve R = 1.1. The minimm AV (a, = 13.8°) results from solution
B. For this condition, a circumferential impulse corresponds to a rela-
tive maximum and requires a AV about 13.5 percent above ANﬁin
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APPENDIX B

VELOCITY IMPULSES ALINED IN DIRECTIONS OTHER THAN OPTIMUM

Expressions are derived herein that give the magnitude of the cor-
rective velocity vector for impulsive thrust alined in tangential, radial,
and circumferential directions. Also, the wvelocity requirement corre-
sponding to zero-energy-change (AE = 0) impulses is presented. In this
analysis, absolute-value symbols will be used to account for either ini-
tial condition RPl >1 or Rpl < 1.

Case A: Tangential Thrust

From sketch (a),

Radial
direction

(2)

for tangential thrust,
AT = |Vy - Vel
Since cos o = cos ap, the definition of angular momentum gives

(v2>2 (H2>2 _ Ep+1 (VB -1/R) +1
& i) "2

2

Solving for V4 eand simplifying, where V5 = Ey + 1/R,

5 EqR(R - 1) + (R - 1)
2= L
E.R“(R: -1) + R(RR, ~ 1
1 ( pl ( pl )

v87-1
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Therefore,

S | NC KRR -

-1) + R(RR_ - 1)
1y Py

Limitations on Use of Tangential Thrust

Under certain initial conditions the second radical of equation (15)
may be negative, resulting in an imaginary solution. The term (ElR + 1)
is always positive:

R -1

E,R2(RZ - RR_ -
Y (Pl 1) + R( b, 1)

>0 (B1)

Considering values of R both greater and less than unity,

Rl—El(RIZ)l-l)+Rpl]-1zo if R>1

2 _ _ .
RE:l(Rp l)+RPl] 1<0 if R<1 )

(B2)

1

For a given trajectory, expression (B2) defines the conditions under
which a tangential thrust may be applied.

Case B: Radial Thrust

From sketch (b),

Radial
direction

(o)
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for radial thrust,

B =90° + ay
Y = 90° - a,
From trigonometric relations,
AV = |V; cos B + Vp cos 7| g
]
AV = |V, sin a, - V; sin a| (B3) &
>
Also,
_ sin B cos o
V2=V1iginy ™ V1 Zos o (B4)
Since H = VR cos q,
E, = Hy (BS)

Substituting (B4) into (B3),
AV = |Vq cos a; tan ap - Vq

Therefore,

sin aq| = Vq cosallta.na.z - tan a,l|

H
AV = ZLltan ap - ten ay (B6)

2 2 2 2
Since Hy = E + and Hy = Ho = Eo + 1
1 lRpl Rpl 1 2 2 )

E, = R%lEl + RPl -1 (B7)

Now

COSG'la

Hy Hy

=
ViR R4E; + 1/R

H H H
COS Qny = Vl = 1 = 1
R RaEp + /R Ry/ERE +R, -1+1/R
1 1
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Equation (BG) is now given in terms of initial conditions:

AV = %

,\/Elnlz)l(nz- 1) + Rz(Rpl- 1) + (R'Rpl) - ’\/El(Rz" R12>l) + (R ‘RPJ_)

(16)

Limitations on Use of Radial Thrust

As In case A, a limitation on the use of radial thrust presents
itself. Consider the first radical of equation (16):

Elngl(az - 1) + Rz(Rpl -1) + (R - Rpl) >0 (B8)

Dividing by (R - 1) and collecting terms,
R(Elkgl +Ry - 1) + (ElR%l + Rpl) 20 (B9)

The second radical of equation {16} is H; tan a; and must be real.

Therefore, the limitation on radial corrective impulses is given by the
inequality (B9).
Case C: Circumferential Thrust

From sketch (c),

(c)

\
|
|
\
|
distance
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for circumferential thrust,
P=ay
¥ =180 - a,

AV = |Vy cos B+ Vg cos T| = |Vy cos a3 - Vg cos ap|

AV = %lVlR cos o, - VoR cos a.2|

Therefore,
AV = §[|H) - Hy (B10)
From the law of sines,
: sin
Sin E a’l (Bll)

Ve=Visinr " 15 o,
Since H2—(VRcos )Z—E +l=V2-l/R+l
2 = \V2 %2 = E 2 ’

R -1

V%(choszd,z -1) = =

V4(R? - R%sina, - 1) = R 1; 1

Substituting from (Bll),

R -1

V%(R2 -1) - VJZ_stinzcx.l = =g

R ;{ L, VEstinza,l

R® - 1

Vi = E, + 1/R =

Transposing, using cosZa; =1 - sinZa,, VE =E; + 1/R,
H= R%E + Rp, and simplifying give

2 _ Ra 2 .
_ E, (R Rpl) + (R Rpl)

HS = E. 4
2~ 72 1 o
R™ -1

V8-
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Equation (B10) may now be rewritten

Ey(R® - R 2 _
= & |{mRE, R, - ﬂ/ = pl)-+1(R =)

Limitations on Use of Circumferential Thrust

For limitations on the use of circumferential thrust, consider the
second radical of equation (17). If a real solution is to be satisfied,
then

RZ(Ey + 1) -(ElR§l+Rp)zo if R>1
1 (B12)

RZ(E; + 1) - (ElR%l + Rpl) <0 if R<1

Radial
direction

(d)

for zero-energy-change thrusts,
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From the relations of an isosceles triangle,

AV = ZVl sin %‘
sin Ao

sin B &= —————
P 2 Sin‘%%

From equations (5) and (8), where Rp, = 1,

AV = 24/E; + 1/R sin

E, +1
Los™t pl2—— - &
2 R%E, +R

(B13)

2
1ol PPt By
2 REEl +R

(18)

Limitation on Use of Zero-Energy-Change Thrusts

Since the cosine of an angle must be real and not greater than unilty,

El+l
0 T——-—<l
SRE1+R"

(B14)

The solution of (Bl4) at the two limits results in the condition

(R> 1, E; > -1).
a distance greater than the target perigee.

A corrective impulse of this type must be applied at
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APPENDIX C

DEVELOPMENT OF EQUATIONS DESCRIBING TRANSFER MANEUVERS
Perigee Intersection Maneuver

The execution of the perigee interseetion maneuver is illustrated
in figure 1. The first velocity impulse (AVI) acts to correct the ini-

tial perigee, and its magnitude 1s calculated based on the minimization
analysis described earlier in the report. The second impulse is applied
at the target perigee in a direction opposite to the wvehicle velocity.
The required circular velocity is simply

V - —i._. = 1
¢ ZRPZ W

since sz = 1 by definition. The trajectory velocity at the perigee
is, from equation (5),

A/Bo + 1
The second impulse is therefore

1
AVII = q/Ez’i’ 1l - VE

and the total requirecwent for the maneuver is

AVy = VT + AV = OVpyp + (/\/Ez F1- 7%) (19)

Transfer Ellipse Maneuver
The transfer ellipse maneuver is shown in figure 6(a):

ANy = AT + AT (c1)

From the geometry of the figure, the semimajor axis is, by definition,

R R
A _ RP]_ + Pz Pl +1 (CZ)
t.e. = ) = 3
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The semimajor axis can also be related to the total energy of the
elliptical transfer orbit (ref. 5):

1
Are. = - — (c3)
Therefore, from equations (C2) and (C3),
= -
Et.e. - Rp + 1 (C4)
1

The required velocity along the ellipse at the initial perigee is

(C5)

\/Et o+t = )

while the velocity along the approach path at Rpl is

4/}31 + R (ce)
1

The first retrothrust impulse is the difference between (C6) and (C5):

1 1
AVT = 4/El + - (c7)
Rpl ,\/Rpl(Rpl + 1)

The two possible initial conditions for this maneuver are shown in
figure 6. If RPl > 1, the second application of thrust i1s at the

perigee of the transfer ellipse and directed opposite to the path veloc-
ity in order to achieve the lower value of circular velocity. If
Rpl < 1, thrust is applied at the apogee and colinear with the path

velocity. 1In either case, the velocity at the point of tangency to the
satellite orbit is, from the comservation of angular momentum,

R
__P1 (cs)
Rp, +1

The second impulse is the absolute difference of (C8) and circular ve-
locity. The absolute value is necessary to include either initial

condition:
AV = T T—— ;}5 (c9)

V8-
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Equation (Cl) now is given as

- ’ 1 _ 1 Py 1

REFERENCES

Ehricke, Krafft A.: Error Analysis of Keplerisn Flights Involving a
Single Central Force Field and Transfer Between Two Central Force
Fields. Navigation, vol. 6., no. 1, 1958, pp. S5-23.

. Moeckel, W. E.: Interplanetary Trajectories with Excess Energy.

Paper presented at Int. Astronautical Cong., Amsterdam (Holland),
Aug. 23-30, 1958.

. Moeckel, W. E.: Trajectories with Constant Tengential Thrusts in

Central Gravitational Fields. NASA TR R-53, 1959.

Chapmun, Dean R.: An Approximate Analytical Method for
Entry into Planetary Atmospheres. NACA TN 4276, 1958.

Moulton, Forest Ray: An Introduction to Celestial Mechanics. Second
Revised ed., The Macmillasn Co., 1947.




36

E-484

*SATQI0 JI9JSUBIS OTIFUSOOTTOY AJISUS~UNWTUTH JOJ Do3BTNOTED,

v6T 0

€02 °0

e¥T 0

360 0~

¢TSS 0

T92 0

66°2

@Apquﬁm Jo s0oBIaNS

18 §9T3T00TeA odrOSD)

U3 JIed WOIT TBATILIE

uodn 1TQJI0 UOTJBULTASIP
18 A1T00ToA OTTOqIsdly

]

9%0°T

010 T

6T6°0

98L °0

992 °0

732 "0~

¥22°0-

mﬁﬂpgmm JO s0BFJINS 3B
S9T3To0TaA adeose) jeuweTd
UOTFBUTLSSD WOIJ TBATIIE
uodn 4TqI0 S, Yyjaeqd

48 £3T00TaA OTTOqQxsdAy

06T2

022T

00s

Sv¢e

87T

60T

L*9L

LO*%

TTpea joueTd ‘30937e

g,99ueTd jusdasd QT

ST 3498JJ° TBUOTILBLTABIS
JETOS oJa8UM 30UelsTq

S6°2T

0% *%T

€gee

70 '8¢

22°'%

S6°'9

TS*9

66°T

oos [seTTuU
‘£1100ToA odeoss 50BIING

0S7 ‘ST

0S¥ ‘9T

005°fLe

0S¢ ‘7%

80T2

096g

0SLE

0SST

SOTTW ‘snIpsBa WBol

swmadsN

snuexn

uIngeg

JeqTdnp

sIel

nphwﬂ snuap

Lanoas

VILVA XYVIEANVId -

‘T HIDVL




E-484

3T

- R
Rpl Vkﬁ
Planet
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(a) Motion in orbital plane.

Ly =lap - ag

(b) Velocity correction diagram.

Figure 1. ~ Relative motion and velocity correction diagrams.
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Veloclty impulse, AV
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(b) Veloeity impulse in vicinity of optimum.
Figure 2. - Concluded. Corrective velocity impulse

required to attain desired trajectory (sz =1).
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Figure 3. - Continued. Characteristics of minimum velocity impulse. Initial
energy, Ey, 0.05.
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Approach path
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Figure 6. - Transfer ellipse maneuver.
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Total veloclty impulse, AVy
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Figure 7. - Continued. Required velocity impulse to transfer from approach
trajectory to circular satellite orbit.
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Figure 7. - Concluded. Required velocity impulse to transfer from approach
trajectory to circular satellite orbit.
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